lc
class
LC
Reads liquid chromatography runs in CDF format
Methods
from_cdf(cdf_data: bytes)
Reads in CDF data from Agilent LC and stores it in the class
get_elution_peaks(chromatogram: pd.Series, peak_prominence_threshold=10, num_peaks_to_find=None)
Get elution peaks from raw chromatogram data
function
LC.init
Initialize LC class
function
LC.from_cdf
Reads in CDF data from Agilent LC and stores it in the class
Parameters
cdf_data : bytes
CDF data in bytes
function
LC.get_elution_peaks
Get elution peaks from raw chromatogram data
Parameters
chromatogram : pd.DataFrame
Pandas Series with time as index
peak_prominence_threshold : int, optional
Minimum prominence of peaks to be considered, by default 10
num_peaks_to_find : int, optional
Number of peaks to find
function
LC.decode_peaks_name
Decodes the peak names from bytes to strings; move peak name to front of DataFrame
Parameters
df_peaks : pd.DataFrame
Dataframe containing peak names
Returns
pd.DataFrame
Dataframe with peak names decoded
function
LC.get_cdf_dataframes
Loads in the cdf data and proceeses it into dataframes, extracting the chromotography data,
peak info table, and metadata.
Parameters
cdf_data : bytes
CDF data in bytes containing HPLC run data
Returns
Dict[str, pd.DataFrame]
Dictionary containing dataframes for metadata, peak info, and chromatography data
function
LC.compare_aia_files
Compare 2 AIA files, printing out differences
Parameters
ds_base : nc.Dataset
Base AIA file
ds_cmp : nc.Dataset
Comparison AIA file
function
LC.verify_aia_file
Verifies AIA fields against spec. E1948-98 is the original spec.
Parameters
ds : nc.Dataset
AIA file
spec : str
Spec to validate against